Processing math: 100%

Monday, July 4, 2022

Rady

Číselné rady 


Príklad 7: Vyšetrite konvergenciu radu \displaystyle\sum_{n=1}^{\infty} \frac{4}{3+n^{2}}.

Riešenie: Využijeme Cauchyho integrálne kritérium. Určíme
\int_1^{\infty} \frac{4}{3+x^{2}} \ dx = \lim_{b\to\infty} \int_1^{b} \frac{4}{3+x^{2}} \ dx= \lim_{b\to\infty} \left[ \frac{4}{\sqrt{3}}\cdot \mathrm{arctg}{\frac{x}{\sqrt{3}}}\right]_1^{b} =
=\frac{4}{\sqrt{3}}\lim_{b\to\infty} \left(\mathrm{arctg}{\frac{b}{\sqrt{3}}} - \mathrm{arctg}{\frac{1}{\sqrt{3}}}\right) = \frac{4}{\sqrt{3}} \left( \frac{\pi}{2} - \frac{\pi}{6}\right) < \infty.
Integrál konverguje, teda aj rad konverguje.

No comments:

Post a Comment