Friday, October 28, 2016

Integrovanie funkcie viacerých reálnych premenných 

Trojný integrál 


Príklad 4: Vypočítajte
$$\int_0^2\int_0^{2\pi}\int_{\frac{\rho^2}{2}}^2\rho^3 \ \mathrm{d}u \ \mathrm{d}\varphi \ \mathrm{d}\rho$$

Riešenie:
$$\int_0^2 \int_0^{2\pi} \int_{\frac{\rho^2}{2}}^2 \rho^3 \ \mathrm{d}u\ \mathrm{d}\varphi \ \mathrm{d}\rho$$
$$=\int_0^2\int_0^{2\pi}\rho^3\int_{\frac{\rho^2}{2}}^2 1 \ \mathrm{d}u\ \mathrm{d}\varphi \ \mathrm{d}\rho=\int_0^2\int_0^{2\pi}\rho^3\big[u\big]_{\frac{\rho^2}{2}}^2 \ \mathrm{d}\varphi \ \mathrm{d}\rho$$
$$=\int_0^2\int_0^{2\pi}\rho^3\left[2-\frac{\rho^2}{2}\right]\mathrm{d}\varphi\ \mathrm{d}\rho=  \int_0^2\int_0^{2\pi} \left(2\rho^3-\frac{\rho^5}{2}\right)\mathrm{d}\varphi \ \mathrm{d}\rho$$
$$=\int_0^2\left[2\rho^3\varphi-\frac{\rho^5}{2}\varphi\right]_0^{2\pi}\mathrm{d}\rho=\int_0^2\left(\left(2\rho^{3}2\pi-\frac{\rho^5}{2}2\pi\right)-\left(2\rho^{3}0-\frac{\rho^5}{2}0\right)\right) \mathrm{d}\rho$$
$$=\int_0^2 \left(4\pi\rho^3-\pi\rho^5\right) \mathrm{d}\rho=  \left[4\pi\frac{\rho^4}{4}-\pi\frac{\rho^6}{6}\right]_0^2$$
$$=\left(4\pi\frac{2^4}{4}-\pi\frac{2^6}{6}\right)-\left(4\pi\frac{0^4}{4}-\pi\frac{0^6}{6}\right)=16\pi-\frac{32}{3}\pi=\frac{16}{3}\pi.$$

No comments:

Post a Comment